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Abstract—An analytical procedure, based on the Rayleigh—Ritz method and von Karman's non-
linear theory of plates, is developed for computing the buckling loads and the postbuckling solutions
of laminated anisotropic clliptical plates. Lengthy algebraic equations governing the expansion
coefficients of the displacement functions are generated by a symbolic algorithm. Using polynomial
displacement expansions of different orders, postbuckling solutions with increasing accuracy are
systematically computed for isotropic and laminated elliptical plates. The deflections, the force and
moment resultants and the encrgy release rates associated with the solutions of various orders are
compared to assess the trend of convergence. The comparison suggests the lowest order polynomial
expansion nceded to obtain reasonably accurate results for the force and moment resultants and
the encrgy release rates. Previous Rayleigh-Ritz postbuckling solutions based on lower-order
polynomial expansions of the displacements are found to yield results with significant errors.

1. INTRODUCTION

The problems of sublaminate buckling and crack growth in a homogencous plate or a
compositc laminate containing an interior delamination have been the subject of extensive
analytical and numerical studies in the past decade.} For thin strip or elliptical delamination
models the bifurcation loads obtained by two- or three-dimensional finite element analysis
[see, for example, Shivakumar and Whitcomb (1985) and Yin er al. (1986a)] are not
appreciably different from the corresponding results of the homogeneous or laminated plate
analysis. In the case of strip delamination models, closed-form analytical solutions of the
postbuckling deformation may be obtained in the context of the classical laminated plate
theory (Chai et al., 1981; Yin et al., 1986b). The energy release rates associated with
delamination growth may be evaluated, by using the path-independent J-integral, in terms
of the membrane forces and the bending moments in the cracked and intact parts of the
laminate at the crack tip (Yin and Wang, 1984). The results also agree well with the energy
release rates calculated by finite element analysis and the closure integral method (Yin er
al., 1986a). These findings suggest that accurate postbuckling analysis based on a homo-
gencous or laminated plate theory (preferably with the inclusion of the effect of the thick-
ness-shear deformation) may be used. in place of expensive three-dimensional analysis, to
obtain reliable results for the buckling and growth behavior of a delamination with a general
shape.

For a two-dimensional thin-film delamination with an arbitrary shape, the local mem-
brane forces and the bending and twisting moments at a point of the delamination front
determine the pointwise value of the energy release rate (Bottega, 1983; Storakers and
Anderson, 1988). If one assumes a delamination growth criterion depending only on the
local energy release rate, without discriminating among its separate components associated

1 A preliminary version of this paper was presented in the ASME Winter Annual Mecting, San Francisco, CA,
December 1989.

1 For general reviews of the subject, see the recent articles by Garg (1988) and Storakers (1989). Additional
information may be found in Kapania and Raciti (1989), Simitses (1989) and Yin (1989).
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with the three fracture modes. then the principal task involved in the analysis of two-
dimensional delaminations is that of obtaining accurate bifurcation loads and postbuckling
solutions from the von Kuarman equations, This task is formidable if one wishes to tuke
into account the postbuckling deformations of both the cracked and intact parts of the
plate. It is difficult even if one completely ignores the bending deformation and the non-
uniformity of the membrane deformation in the base laminate as induced by local buckling
of a thin delaminated layer. ie. if one adopts the “thin-film™ approximation for the
delaminated layer by imposing the conditions of vanishing deflection and slope along the
crack boundary,

The ditficulties arise from the geometrical non-linearity and the strong coupling
between the in-plane and transverse displacements that are intrinsic to the von Karman
equations of plates. Postbuckling solutions which ignore or inadequately account for such
effects cannot vield reliable results for the membrane forces. the bending and twisting
moments, or the energy release rates. Many existing solution schemes for the bending and
buckling of plates use the calculated results of the central deflection as the principal test of
accuracy. The criterion is inadequate and misleading because. as shown in this paper,
refatively crude postbuckling solutions may yield sufficiently accurate results for the contral
deflection and, at the same time, very poor results for the membrane forees and the encrgy
release rates.

In their analysis of transversely loaded and postbuckled recrangular plates, Chia (1980)
and co-workers obtained solutions by the Rayleigh -Ritz method, using beam eigenfunctions
to approximute the displacements. As the number of terms in the displacement functions
mncreases, the results for the transverse deflection converge reasonably fust. However,
accurate results for the membrane forees and the beading moments are considerably more
ditlicult to obtain. Following Chia’s method, Feng (1983) presented a computerized analysis
of the postbuckling behavior of laminated antsotropic rectangular plites. His analysis used
a much Larger set of beam cigenfunctions to represent the displacements of the middle
surface. He did not provide information concerning the rate or trend of convergence of the
solutions,

In a postbuckling analysis of a simply-supported circular plate under axisymmetric
compression, Friedrichs and Stoker (1941, 1942) noticed significant non-uniform membrane
deformation inan advanced stage of postbuckling. As the boundary compression increases,
the membrane forees in a central portion of the plate eventually become tensile. Bodner
(1973) found a similar behavior in the axisymmetric postbuckling of a clamped circular
plate. Due to the coupling in the von Karman equations, the non-uniformity of the in-plane
deformation has important implications for the bending deformation. This results in large
curvature of the deformed middle surface around the boundary of the plate. Although the
perturbation method used by these authors is upplicable only to within a certain range of
the strain load, the general validity of their conclusions beyond this range has been confirmed
by an analysis based on direct integration of the von Karman cquations (Yin, 1985).

As suggested by Chaiand Babceock (1985), the buckling and growth behavior associated
with general two-dimensional delaminations may be studied by an anualysis of elliptical
deluminations. However, the displacement functions used by Chai and Babcock contain an
insuflicient number of terms to reflect significant non-uniform membrane deformation and
the boundury cffect. In the present work, power series expansions of the displacements
are systematically enlarged to obtain higher order approximate solutions of postbuckled,
clamped clliptical plates by means of the Rayleigh-Ritz method. In the special case of
axisymmetric postbuckling of circular plates, Rayleigh-Ritz solutions of the various orders
are compared with the solutions obtained by direct integration of the von Karman equations
(Yin. 1985). The comparison indicates convergence of the Rayleigh-Ritz solutions, and
suggests the lowest order approximate solution needed to obtain reasonably accurate results
for the membranc forces, the bending moments and the encrgy release rates. The solutions
of the required order are then computed for elliptical delaminations with various aspect
ratios. It is found that these postbuckling solutions also show significant boundary cffeet,
although in a manner more complex and fascinating than in the case of axisymmetric
postbuckling of circular plates.
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A Rayleigh-Ritz procedure involving a relatively large number of coefficients for the
non-lincar analysis of anisotropic plates requires the use of symbolic algebra. A symbolic
computational program is written in the Fortran code to generate the total potential energy
function in terms of the geometrical, material and loading parameters. as well as the
undetermined expansion coefficients (Jane, 1989). The program also yields the non-linear
algebraic equations governing the undetermined coefficients. Solutions of the equations are
computed for isotropic circular and elliptical plates (in Part I of this paper) and for cross-
ply and angle-ply elliptical laminates (in Part II).

Non-dimensionalization of the postbuckling problem shows that the total potential
energy function depends on the geometrical and stiffness parameters through certain specific
combinations. Consequently, all posthuckling solutions of anisotropic elliptical (or rec-
tangudur) laminates may be generated from appropriate solutions of anisotropic circular (or
square) luminates by rescaling variables. This important conclusion. shown in Section 2.3
of the present paper, allows a significant saving of computational effort in a parametric
study of the postbuckling behavior of various types of elliptical laminates.

2. RAYLEIGH-RITZ SOLUTIONS

We consider an elliptical delamination with semi-axial lengths ¢ and b along the X-
and Y-coordinate axes. respectively. Let the base plate be subjected to uniform in-plane
normal and shearing strains Eyy. Eyy and Eyy. If the strains are predominantly compressive
and if they are sufliciently large. then the elliptical delaminated layer buckles and becomes
completely or partially detached from the base plate. We assume that the thickness of the
delaminated layer, A, is small compared to the thickness of the base plate, so that, within
the base plate, the bending deformation and the non-uniformity of the in-plane deformation
caused by the buckling of the delaminated layer are both negligibly small. Then the delami-
nated layer is subjected to displacement boundary conditions along the entire elliptical
boundary. The total potential energy of the layer is identical to its total strain energy.

2.1 The total potential encrgy
In the buckled states, the membrane strains and the curvatures of the middle surface
of the delaminated layer may be approximated by

U 1<nw>3 oV 1(0;1/)’ U OV oW oW
£ = + . b T ), E S

oy Ta\ay 1= oY t 2\ oy = QY + X ox Ay
oW oW " QW l
Ry =0y, RKi= oo, Keg =2 oo
PToox! S ko cXeay (h

where U and V' are the in-plane displacements on the middle surface and where W is the
transverse deflection. The force and moment resultants of the delaminated layer are related
to the strains and the curvatures according to the equation
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The stiffness coeflicients in the last equation are those defined in the classical laminated
plate theory. If we abbreviate the preceding equation in the form
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No=dg+Bx. M =8Bc+D.x, (23

then the total potential energy of the delaminated layver may be expressed as

1
= i”Z (Ve +Mr)ydYdy (3)

where the integration is carried over the region of the plate and the index i is summed over
1.2 and 6.

2.2, Non-dimensionalization and polyvnomial approximation
We introduce the following non-dimensional variables and constants:
x=Xa u=Uah', w= Wh 2alhy’
v=Yb, v=Vbih', i=alb. T A, ab
(a/h):E”, Eqy = (ab/h:)E“-, Evy = (b/h):Ew
£ = (a/h)zax, £y =(b/h)’es, &= (ab/hl)ﬁﬁ
Ry = (@ /MK, Ry = (b K. R, = (abjh)k,. )

Eix

Let the displacement functions be approximated by the polynomial expansions

U=axEyw+bvEy+ (1~ x> =) P(x, i a
V= axEvy+byEyy + (1~ X" =17 )Q(x, 0)h b
W= h(l =x* =y R(x, p)
where £, (0 and R are polynomial functions of the normalized coordinate variables. All
boundary conditions along (X/a)*+(¥/h)* = | arc satisfiecd by these displacement
functions. Now the non-dimensional displacement components u, e and w have the following
CXPressions
U= Xt +ye,, +4,00x 1)
v=XE,+ Ve, Zg00x, 1)
w= ZiR(x,y), (5)

where
Zy=L—xi=y7

From eqn (1) we obtain the following expressions for the normalized membrane strain
components and the normalized curvatures

Eet(ZyP) .+ (DUZIR))

£y =&, +(ZoQ), +(I/DUZiR).I*

£y = 264, +(ZoP), +(ZyQ)+(ZiR) AZ3R),
Ry = (Z3R) weo K2 =(ZiR),. Fo=2AZiR) ..

131

The polynomials P, Q and R are defined by their respective sets of coefficients {a,},
{h,} and {c;}. The number of coefficients in each set depends on the degree of the polynomial.
We define twenty-one functions L,,. M, and N, (i, j =1, 2.6; L, and N; are symmetric
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with respect to the indices while M,; is not) by the following integrals over the unit disk
il

L;= J‘J‘E'El dedy, M, = J‘J‘E,E‘j dxdy, N, = J‘J‘E,EJ dxdy. (6)

It is clear that L, M;; and N,; depend only on the normalized strain loads ¢.,. ¢,,. &, and
the coefficients {a,}, {b:} and {c;} of the polynomials P, Q and R. Thus, once the forms of
the polynomials P, Q and R are selected, all the integrals L;;, M, and N, can be evaluated
and expressed explicitly in terms of the normalized strain loads in the base plate and the
coefficients of the polynomials. These explicit expressions are independent of the geometrical
and material parameters (a. b, h, A;;. B,;, D,)) of the anisotropic elliptical plate. They depend
only on the approximation scheme used in the analysis.

Equation (3) now yields the following expression for the non-dimensional potential
energy:

n= (‘Z") Y'Y 6:6,04, L, +(2/h)B,M,+(1/h)D,N,) 7
noi g

where { and j are again summed over 1, 2 and 6 and
5l = (h/a)z, 6: = (h/b)z, (S(, = hz/ab.

Once an approximating scheme involving a set of undetermined coeflicients a,, b, and ¢, is
adopted and the integrals L;;, M;; and N, arc explicitly obtained, the total potential encrgy
for any particular geometrical and material configuration of the elliptical laminate can be
obtained straightforwardly. This yiclds an expression for the normalized potential energy
M =M(a.b. ettt i d,/d,, B, lhA | D, Jh*A,). (8)
[tisclear that the major task involved in the explicit determination of the last expression

is that of evaluating the integrals of eqn (6). Each integral is a sum of integrals of the
following form:

C(1phyt?

Lo eyt
I(m,n, k) = f f X"yl =x? =) dx dy
-1
1 n
= f (I =piykpment! drj cos™ 0 sin" 0 do.
0 0

Onc has /(m, n, k) = 0 if m and n are not both even. Otherwise,

I-3-5---(m—l)-|-3‘-5-“(/1—1). k (- 1)k

I(m,n, k) = 2r- g '
(m,n, k) n 2:4-6---(m+n) o +2p+m+n)pl(k —p)!

Depending on the number of coefficicnts involved in the polynomials P, Q and R, the final
approximate expression for the potential energy may contain hundreds or even thousands
of terms. The intermediate steps leading to the final expression may involve hundreds of
thousands of integrals. A special purpose symbolic algorithm was developed in the Fortran
code to generate the potential energy function and the algebraic equations governing the
undetermined coefficients (Jane, 1989). Cyber 205 supercomputer at the University of
Georgia was used to implement the symbolic algorithm and to solve the resulting system
of non-linear algebraic equations. This system consists of the following equations

SAS 29:5-€
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Furthermore, the strains in the base plate corresponding to the states of bifurcation (from
membrane states to buckled states) may be calculated from the following characteristic
equation

Fiat § BRGE § S ¥ |

cacfa; cach; dalc

e o N

Ghia, bdb, bic, =0 (10)
SN e o

écéa, Celb, dcéc | (a,=b,=c =0)

Equation (9) will be solved for the coefficients {a,}. {5} and {¢,} by using the Newton-
Raphson iteration scheme. In order to have suitable initial estimates of the coeflicients, it
is imperative to start from a bifurcation point (corresponding to a set of coeficients
satisfying eqn (10)) in the load space, and to obtain successive postbuckling solutions along
a load path by imposing small load increments. The coordinates of the load space are the
imposed in-plane normal and shearing strains in the base plate. Since egn (9) consists of
algebraic equations which depend lincarly on the coefficients {¢,} and {b,}, the emphasis in
each itcration step is to obtain the proper increment of {¢,}. The new iterated values of {a,}
and {b,} may be obtained casily by solving a subsystem of lincar equations using the current
estimates of {¢,}.

2.3. Generating all posthuckling solutions of elliptical laminates from appropriate solutions
of circular luminates by rescaling

The structure of the expression for the total potential energy, eqn (7). implies the
following important concluston : all postbuckling solutions of ethptical laminates (according
to the von Karman theory) may be obtained from the postbuckling solutions of circular
laminates by rescaling the coordinate variables, the thickness, the stiffness parameters and
the membrane strain loads. Indeed, if one wants to obtain the postbuckling solution U, ¥,
W of an elliptical laminate with the thickness A, semi-axial lengths ¢ and b, stiffness matrices
[A4,]. [B,) and [D,]. under the strain loads Eyy, Ey and Eyy in the base plate, one only has
to obtain the solution U, V,, ¥, of a circular laminate with the thickness &, radius r,
and stiffness coefficients

S‘,’] = (’()/’1«;)4(;'/”)4511~ ~“|)2 = (’1)/!1¢))"(/1:/U”)251:
S% = (ro/hy) (hib)*S s, o = (ro/hy)* (h*fa’h)S
525 = {r(,/lz(,)4(h:/ah)ZS(,(,. (:)ﬁ = (!‘(;//!‘,)4(/!‘/(15")83,,

(where S, stands for 4,,. B, and D,, in succession) under the strain loads
E3y = (holro)) (a/h) Exy. EVy = (hojro) (B[R Eyy.  Exy = (ho/ro)*(abih®)Eyy.
The solution for the elliptical laminate is related to the solution of the circular laminate by
U = (hihe) (ro/a)Ue. V= (hihy) (rof0}Ve, W = (hihg) W,
The validity of this statement follows from the fact that the two laminates have the same
3.8,4,. 6,0,B,; and §,8,D,. the strain loads on the respective laminates have the same

normalized values ¢... &,, and ¢.,. and the respective solutions have the same normalized
displacements u, v and w. From eqn (7) one finds that the potential energy functions of the
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two laminates are identical except for a multiplicative factor. Hence the stationary condition
for the respective potential energies are realized by the same normalized displacement
solution u. r and w.

Since one has the freedom to choose the radius r, and the thickness A, of the circular
laminate arbitrarily. there are infinitely many postbuckling solutions of circular laminates
which correspond. according to the preceding relations, to the same postbuckling solution
of a given elliptical laminate. Furthermore, one may introduce new rectangular coordinate
axes in such a way that, for the circular laminate. these axes coincide with the principal
directions of the imposed strain tensor in the base plate {(whose components in the original
coordinates are EVy. Ey and E},). Referred to the new coordinate system the strain load
in the base plate of the circular laminate has no shearing component. Consequently, in a
parametric study of the postbuckling behavior of elliptical delaminations of various geo-
metrical and material configurations under general membrane strain loads in the base plate,
it is sufficient to deal only with circular anisotropic delaminations under biaxial strain loads.
All solutions of the elliptical delaminations may be generated from appropriate solutions
of circular delaminations according to the preceding rescaling rules.

[t is clear that a similar procedure may be used to generate all postbuckling solutions
of rectangular anisotropic laminates from appropriate solutions of square laminates sub-
jected to general in-plane loads.

24, Svmunctry conditions on the displacement functions

For a general anisotropic clliptical delamination in a base plate under the in-plane
strain loads Eyvy, Eyy and Eyy, the postbuckling displacement functions in the delaminated
sublaminate satisfy the conditions of central symmetry ;

u(—x, =)= —u(x. ), v{—x, =)= —v(x, ). w(—x, —3)=w(xy). (I

These symmetry conditions imply that the polynomials 2 and @ in eqn (5) contain only
terms of odd degrees while the polynomial R contains only terms of even degrees. [n the
cases of isotropic, specially orthotropic, or cross-ply sublaminates with aligned loading and
symmetry axes, additional symmetry conditions with respect to the coordinate axes apply :

U(.’C* y) = - N( - X, ,V) = u(.f, - y)s

vl y) =v(=x,y) = —uv(x, —y),

wix, ¥} = wl—x,p) = wlx, —y). (12)
Equations (11) and (12) taken together imply that P, Q and R have the forms
Plx.y) = xPy (X%, 3%, Q) = yQ,(x% ), R(x.») = R (x% 2. (13)

It P, and @, include only constant terms and R, includes, in addition, lincar terms in X<
and y,, then the displacement functions reduce to those used by Chai and Babcock (1985)
in their five-term Rayleigh-Ritz solutions. Rayleigh-Ritz solutions of higher orders {p, r!
may be considered where p and r refer, respectively, to the degrees of the polynomials P
(same as that of Q) and R of eqn (5). For example, for the solution of the order {s. 4}
satisfying the full symmetry conditions of eqns (11) and (12), the polynomials P, Q and R
of eqn (5) have the following forms:

P(x.y) = x(a,+a,x* +ayy* +a,x* +ax*yi +agy?)
Q(x.p) = p(bi+b:x* + b,y +bhox  +bx y  + b y)
R(x.p) = ¢\ +eax+eypi+oaxt +osxp? o (14

The Rayleigh-Ritz solutions examined in the present work are of the orders {1, 2}

v -y



598 W.-L. Yiv and K. C. Jase

13,4}, 15.4}, {5.6} and {7, 6}. The highest degree of the polynomial and the total number
of undetermined coefficients for each order of solutions are shown in Table 1.

In the remaining sections of this paper (Part I). we obtain and examine postbuckling
solutions of homogeneous isotropic circular and elliptical plates. These solutions possess
the full symmetry properties of eqns (11) and (12). Postbuckling solutions of anisotropic
elliptical sublaminates generally satisfy eqn (11) only and their displacement expansions
include a considerably larger number of terms, as indicated in Table 1. Such solutions are
presented in Part II.

3. CLAMPED ISOTROPIC CIRCULAR PLATES UNDER AXISYMMETRIC COMPRESSION

In a previous work (Yin, 1985), axisymmetric postbuckling solutions of a clamped
isotropic circular plate have been obtained by numerical integration of the governing
differential equations. These solutions may be used as the standard of comparison for the
Rayleigh—Ritz solutions of various orders. The comparison was made over a range of the
strain load from the bifurcation strain to about ten times the bifurcation strain. This wide
range of the strain load far exceeds the usual range considered in existing postbuckling
analyses or appropriate to most practical applications. The intention is to set an extremely
severe test of the validity of the lower order approximate solutions by comparing the results
with the higher order solutions, and with the solutions obtained by direct integration (Yin.
1985 ; hereafter called the “'reference solutions™), at widely different levels of the strain load.
This accounts for the very significant discrepancies in the results shown in the following
figures of this paper.

A4 Central deflection, membrane force and bending moment

Consider a circular sublaminate of radius ¢ and thickness A, made of a homogencous,
isotropic clastic material with Young’s modulus £ and Poisson’s ratio v. The subluminate
has the bending rigidity D = ER*/12(1 —v?). In an axisymmetric deformation, the radial
membrane foree and the radial bending moment are related to the radial and transverse
displacements, U, and W, according to the formulae

Eh du, U, d'W v dW
[, = AT ), M =l .
N (l—r')(dr ty r) M (dr‘ +r dr)

The strain load in the base plate is given by
Evy = Eyy = —ty. Eyy=0.

We define the non-dimensional compressive radial force and the non-dimensional bending
moment as follows:

N.a- du u a’ dow D dw
= - =12 ) M@ =M=
P(3) D é &) =,;pM azt Ve g
where a is the radius of the circular plate, w is as defined in eqn (4), and
Table 1. Rayleigh-Ritz solutions of various orders
Solution label 1,2} 3.4} [5, 4] [5.6} [7.6}
Max. degreec of P & @ | 3 5 5 7
Max. degree of R 2 4 4 6 6
Number of coefficients. when eqn (12) does not apply 8 2 33 40 56
Number of coefficients, when egn (12) apphies 5 12 I8 2z 30
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Fig. 1. Circular delamination—deflection at the center.

E=rla, u(@) =al/h?, u(l) = —(a/h)*e,.

It is found that, with regard to the central deflection and the radial bending moment
at the boundary, Rayleigh-Ritz solutions of the order {5, 4} or higher are in excellent

agreement

with the reference solutions (see Figs 1 and 2, where the solutions of the various
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Fig. 2. Circular delamination—boundary radial moment.
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orders are identified by the number of coefficients given in the last row of Table 1), The
curves associated with the solution of the order {7. 6}, i.e. the 30-term solution. are nearly
indistinguishable from those of the reference solutions. Only the solution of the order {7, 6]
includes polynomial terms of sufficiently high degree to yield very close results for the
boundary radial force, and this is true only in a range of the strain load up to about two
to three times the bifurcation strain (Fig. 3). The solutions of the lowest orders. (1. 3] and
'3, 4}, generally show very significant errors in the membrane forces.

Strong non-uniformity of the membrane force is indicated by the difference between
the radial forces at the boundary (Fig. 3) and at the center (Fig. 4). Under large postbuckling
loads. all solutions except the lowest order. | 1. 3}, show tensile radial force at the center.
Generally speaking. the solutions of the orders [5. 4], {5.6} and {7. 6] vield acceptable
results (i.e. with about 5% or smaller errors) for the deflections., membrane torces and
boundary bending moments over a range of the radial strain [oad up to about three times
the bifurcation strain. When the strain load exceeds this range, the deflection at the center
is more than 1.5 times the thickness of the sublaminate (see Fig. ). Compared with the
solutions of the order [7, 6], those of the orders {S. 4} and (5. 6] show signiticantly larger
deviations from the reference solutions.

A comparison of the solutions of the orders {5, 4} and {5. 6} indicates that, by raising
the degree r of the even polynomial R without at the same time also raising the degree p ol
the odd polynomials P and Q. one increases the number of expansion coetlicients in the
solution but obtains slight change or improvement in the accuracy of approximation. This
is because a satisfactory representation of the non-uniformity of the membrane deformation
requires polynomial functions P and Q of sufficiently high degree, and such non-uniformity
significantly affects the transverse deflection through the coupling in the von Karman
cquations.

3.2, Energy release rates in delamination growth

For the particular problem at hand. let the total potential encrgy of the isotropic
circular sublaminate be non-dimensionalized in the following manner

601

501

[ () Fo3
(@] Q (o]

Boundary force P(1)

Q

s

-101

-20 . v - — v v v v
0 1 4 9 16 25 36 49 64 81 100

12(1-v2) (a/h)zso

Fig. 3. Circular delamination—radial force at boundary.
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Fig. 4. Circular delamination —-membrane foree at the center.

N = Qa*/rER®).

For the various postbuckling solutions of the sublaminate, the normalized potential energies
are plotted in Fig. 5. In this and the two subsequent figures, the horizontal coordinate

1201 =v)eq(arh)

is interpreted as a normalized delamination radius (under a fixed radial strain load ¢, in
the base plate), rather than as a non-dimensionalized strain load (for a fixed delamination
radius ¢). Under a fixed strain load, the potential energy for an approximate solution may
be differentiated with respect to the delamination radius. The result is related to the energy
refease rate in axisymmetric growth of the delamination according to the following formula

- z_‘_i'lmé 1 dn

e ok 4

Comparison of the curves in Figs 5 and 6 indicate that all solutions except the lowest-order
yield close results for the potential encrgies and the energy release rates, while the lowest
order solution underestimates the energy release rate by as much as 35%.

The energy release rate may also be evaluated by means of the path-independent M-
integral in terms of the boundary radial force and the boundary bending moment of the
postbuckling solution (Yin, 1985). This yields the formula
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_ 1—v* [ Ehe, . ) M (a)Y
G—'E”E*,h-{(-i-:—;-*ﬂ\,(u) +l:(—‘;;—)} (16)

For an exact postbuckling solution the result should agree with the previous result obtained
by differentiation of the total potential energy. However. for an approximate postbuckling

160
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/(= Eh*/2a%)
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100 4
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60

40 7

20

/12(l~u2)coa/h

Fig. §. Circular delumination —potential energy versus the radios.

yin 1985 30
1.0 1 8,22

T = G/Ehd
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] '1 2 3 4 5 6 7 8 10
/12 (1-v?) saa/h

Fig. 6. Energy release rate calculated by differentiating the potential energy with respect to the
radius.
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Fig. 7. Encrgy release rate by the J-integral method.

solution the two results may differ. For the Rayleigh-Ritz solutions of the various orders,
the results from eqn (16) are normalized with respect to Eheg and shown in Fig. 7. [tis seen
that the solutions of the order {5, 4} or higher yicld close results over a range of strain
loads up to about three times the bifurcation strain,

4. ELLIPTICAL DELAMINATIONS

We next obtain the bifurcation loads and the postbuckling solutions of homogencous
isotropic elliptical plates with various aspect ratios by the Rayleigh-Ritz method.

4.1. Bifurcation loads under equal biaxial compression

Under equal biaxial loading along the principal axes of the cllipse (ie. E¢y =
E,, = —&,). the normalized bifurcation loads have been calculated by Woinowsky-Krieger
(1937) using elliptical coordinates. His results are shown in Table 2, along with two
sets of Rayleigh-Ritz solutions obtained in the present analysis. One set of Rayleigh-Ritz
solutions uses a polynomial R(x,y) for w(x, y) containing quadratic and constant
terms only. In the second set of solutions, R(x, y) contains quartic and lower-order terms.
Since the solutions in a displacement formulation yield upper bounds of the buckling load,
the present results, being smaller in value, are better estimates. Furthermore, in the case of
a circular delamination (g/b = 1), the normalized buckling load predicted by the second set
of Rayleigh-Ritz solutions is almost indistinguishable from the exact result, namely, 14,683,
As the aspect ratio a/b becomes large, the present upper-bound estimates approach the
limiting value n° = 9.870 much faster than the results of Woinowsky-Krieger (1937). Hence
the bifurcation loads of elliptical plates under equal biaxial compression are accurately
predicted by the Rayleigh-Ritz method involving a small number of expansion coefficients.

Table 2. Normalized buckling loads P(h°/ D) for elliptical delaminations : Comparison of the
results of Woinowsky-Kricger (1937) with Rayleigh - Ritz solutions

ah 1.0 1.4 2.0 30 4.0 5.0
Woinowsky-Krieger (1937) 14.79 {1.81 11.02 11.01 ft.is 1.3
Quadratic R 14,702 11.589  10.517 10.239 10.265 10.32

Quartic R 14.683 11562 10436 10002 9.929  9.955
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Fig. 8. Elliptical delamination—base plate under unaxial foad.

4.2, Postbuckling solution under uniaxial compression
For the postbuckling analyses we consider clliptical delaminations of aspect ratios
a/b =1, 2 and 4 in a basc plate under membrane strain loads

Eyy = —tg, Eyyv=veg, Evy =0

Such strain loads correspond to uniaxial compressive forees applicd to the base plate along
the Y-direction (Fig. 8). Under a normalized strain load Eyy(bjin® =4, and with the
assumption v = (.3, the in-plane and transverse displacements along the principal axes of
the sublaminate are shown in Figs 912 for an elliptical sublaminate with /b = 2.
Additional figures for the cases /b = | and 4 may be found in Jane (1989). Figures 9 and
10 show the deviations of the in-plane displacements in the delaminated layer from the

a/b=2 Eyy(b/h)’ = - 4 22 ‘

2 12 18

0.80

060

)a/h2

020

5 -term

XX

(U-XE
000

<i,cwo 0.10 0.20 0.30 0.40 0.50 060 0.70 0.60 0.90 1.00
X/a

Fig. 9. Displacement U along the X-axis (a/b = 2).
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Fig. 10. Displacement ¥ along the Y-axis (a/b = 2).

corresponding displacements in the base plate (where, according to the thin-film assumption,
the membrane strains are uniform). The slopes of the curves in these figures indicate the
deviations of the displacement gradicnts from the average membrane strains. The results
for the solutions of orders {5, 4} and {5, 6}, based on the same polynomial expansions for
the in-plane displacements but different expansions for the deflection, are indistinguishable.
The significant non-uniformity in the membranc strains shown by these higher-order Ray-
feigh-Ritz solutions is grossly underestimated by the lowest-order solution. Near the bound-
ary point (X, Y) = (q, 0) the results of the latter are not even qualitatively correct. The
non-uniformity in the membrane strains increases with the imposed strain load and with
the aspect ratio of the ellipse.

a/b=2 Eyy(b/h)? = -4

w(x/a,0)/h

9
?om ot 020 2.30 Q.40 050 .60 o2 o.80 090 1.00

X/a

Fig. L 1. Deflection profile along the X-axis (a/b = 2).
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Fig. 12. Deflection profile along the Y-axis (a/h = 2).
Figure 11 indicates that, along the X-axis, the magnitude of the curvature of the

deformed muddle surface is smaller at the center of the plate and larger near the boundary
points. Along the loading axis, the opposite is true (Fig. 12). Hence the normal bending
moment is relatively small at the two ends of the loading axis and relatively large at the
two ends of the X-axis. As the strain load increases, the concentration (attenuation) of the
normal curvature and the bending moment at the end points of the X-axis ( Y-axis) becomes
more pronounced. This phenomenon has important implications on the postbuckling
growth behavior of an elliptical delamination, Since the normal bending moment results in
an opening action along the delamination boundary and contributes predominantly to the
tocal energy release rate, delamination growth tends to initiate and continue along the X-
axis until the boundary curvature and the moment at the two ends of the axis are sufficiently
reduced by the lengthening of the X-axis. In addition, growth of the delamination along
the X-direction exposes an interior strip around the Y-axis to states of deformation resem-
bling those of one-dimensional delamination models, as may be seen by comparing the
deflection profiles along the Y-axis for various (increasing) aspect ratios. Hence the cur-
vature and the bending moment increase at the two ends of the Y-axis and, eventually,
delamination growth may proceed simultaneously in both X- and Y-directions. The pre-
ceding reasoning provides an explanation for the initial transverse growth of a buckled two-
dimensional delamination under a uniaxial in-plane compression, which has been observed
experimentally (Chai er al., 1983).

4.3. Energy release rates

The non-dimenstonalized total potential energies associated with the preceding solu-
tions are shown in Fig. 13. The results are shown as functions of the normalized strain load
for elliptical delaminations with aspect ratios a¢/b = | and 10. At a large aspect ratio, the
deviation of the results of the lowest order solution (Chai and Babcock, 1985) from the
higher-order solutions becomes significant. The total potential encrgy may be differentiated
with respect to the semi-axial length, a or b, to obtain the energy release rates associated
with delamination growth along the X- or Y-directions. As the aspect ratio of the ellipse
changes during the growth of the delamination, the energy release rate also varies. The
results are presented in Figs 14 and 15, respectively, for delamination growth along the X-
and Y-dircctions, and for three fixed values of the normalized strain load. It is clear that
the lowest-order solution significantly underestimates the energy relecase rates.

The energy release rates calculated by differentiating the total potential energy with
respect to the semi-axial lengths are global quantities associated with certain assumed modes
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Fig. 13. Total potential energy versus the strain load.

of delamination growth. Although the shape of a two-dimensional delamination may be
approximated by an ellipse in each stage of growth, the principal axes of the ellipse may
rotate in the course of delamination growth if the loading axis does not coincide with the
geometrical and material symmetry axes. Thus, the actual growth mode is generally not a
combination of growth along two fixed principal directions and, strictly speaking, it can
only be determined by evaluating the pointwise values of the energy release rate along the
delamination boundary. Such local values of the encrgy release rate may be expressed in
terms of the local membrance forces and bending moments. In the present case of an isotropic
elliptical delaminated layer under biaxial loading, the maximum values of the energy release
rate occur at the boundary points (¢, 0) and (0, b). Figure 16 shows the normalized pointwise

30 F /_/-—..s.\_\.\
'/ //—-\\\\ -\.s.\.N-‘
/ // \\\\ ~—=18,22
25 | I, S —— 12/
- -/
§ y \
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Fig. 14. Global energy release rate, delamination growth along the X-direction.
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Fig. 15. Global energy release rate, delamination growth along the Y-direction,
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Fig. 16. Pointwise energy release rate at (a, 0).
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Fig. 17. Pointwise cnergy release rate at (0, A).

energy release rate at (a. 0) for three fixed levels of the strain load, and Fig. 17 shows the
corresponding results at (0, ). In Fig. 16, the solutions of the highest orders show the
lurgest energy release rates, which are about twice as large as the results of the lowest-order
solution, Figure 17 indicates that the solution of the order {3, 4} greatly overestimates the
pointwise energy release rate at {0, h). These results suggest that solutions of the order
lower than 15, 4} cannot be used to predict the initiation and the nature of growth of a
two-dimensional delamination, According to the highest-order solutions, the energy release
rate at (. 0) consistently dominates over the rate at (0, ) when the aspect ratio a/bis 3 or
smaller. An opposite conclusion may be valid in the regime of Lurge aspect ratios.

Some conclusions from the present buckling and postbuckling analysis of homogencous
isotropic elliptical sublaminates are summarized in Part I along with additional conclusions
based on more extensive results for anisotropic cross-ply and angle-ply sublaminates.
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